A haplolethal locus uncovered by deletions in the mouse T complex.
نویسندگان
چکیده
Proper levels of gene expression are important for normal mammalian development. Typically, altered gene dosage caused by karyotypic abnormalities results in embryonic lethality or birth defects. Segmental aneuploidy can be compatible with life but often results in contiguous gene syndromes. The ability to manipulate the mouse genome allows the systematic exploration of regions that are affected by alterations in gene dosage. To explore the effects of segmental haploidy in the mouse t complex on chromosome 17, radiation-induced deletion complexes centered at the Sod2 and D17Leh94 loci were generated in embryonic stem (ES) cells. A small interval was identified that, when hemizygous, caused specific embryonic lethal phenotypes (exencephaly and edema) in most fetuses. The penetrance of these phenotypes was background dependent. Additionally, evidence for parent-of-origin effects was observed. This genetic approach should be useful for identifying genes that are imprinted or whose dosage is critical for normal embryonic development.
منابع مشابه
X-ray-induced mutations in mouse embryonic stem cells.
Deletion complexes consisting of multiple chromosomal deletions induced at single loci can provide a means for functional analysis of regions spanning several centimorgans in model genetic systems. A strategy to identify and map deletions at any cloned locus in the mouse is described here. First, a highly polymorphic, germ-line competent F1(129/Sv-+Tyr+p x CAST/Ei) mouse embryonic stem cell lin...
متن کاملPhysical mapping of male fertility and meiotic drive quantitative trait loci in the mouse t complex using chromosome deficiencies.
The t complex spans 20 cM of the proximal region of mouse chromosome 17. A variant form, the t haplotype (t), exists at significant frequencies in wild mouse populations and is characterized by the presence of inversions that suppress recombination with wild-type (+) chromosomes. Transmission ratio distortion and sterility are associated with t and affect males only. It is hypothesized that the...
متن کاملGenetic analysis of a mouse t complex locus that is homologous to a kidney cDNA clone.
A mouse kidney cDNA clone, pMK174, identifies restriction fragment length polymorphisms (RFLPs) that map to two unlinked loci. One, designated D17Rp17, has been mapped near quaking, (qk), on chromosome 17 using three sets of recombinant inbred (RI) strains. A study of several t haplotypes resulted in the identification of t-specific alleles of D17Rp17 that map to the proximal half of the t comp...
متن کاملNarrowing the critical regions for mouse t complex transmission ratio distortion factors by use of deletions.
Previously a deletion in mouse chromosome 17, T(22H), was shown to behave like a t allele of the t complex distorter gene Tcd1, and this was attributed to deletion of this locus. Seven further deletions are studied here, with the aim of narrowing the critical region in which Tcd1 must lie. One deletion, T(30H), together with three others, T(31H), T(33H), and T(36H), which extended more proximal...
متن کاملPRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL
PRDM14 is an epigenetic regulator known for maintaining embryonic stem cell identity and resetting potency in primordial germ cells. However, hematopoietic expression of Prdm14 at supraphysiological levels results in fully penetrant and rapid-onset T-cell acute lymphoblastic leukemia (T-ALL) in the mouse. Here, we show that PRDM14-induced T-ALLs are driven by NOTCH1, a frequently mutated driver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 160 2 شماره
صفحات -
تاریخ انتشار 2002